Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Physiol Sci ; 74(1): 8, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331728

RESUMO

The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.


Assuntos
Treino Aeróbico , Humanos , Ratos , Animais , Triglicerídeos , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Insulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Lactatos/metabolismo
2.
Physiol Int ; 111(1): 124-141, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38294536

RESUMO

Lactate, a metabolite of exercise, plays a crucial role in the body. In these studies, we aimed to investigate the role of G protein-coupled receptor 81 (GPR81), a specific receptor for lactate, in regulating lipid storage in the gastrocnemius muscle of rats. To achieve this, we measured the impact of sodium 3-hydroxybutyrate (3-OBA) concentration and time on the cAMP-PKA signaling pathway in the gastrocnemius muscles of rats. Our investigation involved determining the effects of administering 3-OBA at a concentration of 3 mmol L-1 just 15 min before exercise. As expected, exercise led to a notable increase in intramuscular lactate concentration in rats. However, injecting 3-OBA prior to exercise yielded intriguing results. It not only further augmented the cAMP-PKA signaling pathway but also boosted the expression of lipolysis-related proteins such as hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). Simultaneously, it decreased the expression of fat-synthesizing proteins, including acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS), while increasing the protein expression of cytochrome c oxidase subunit Ⅳ(COX Ⅳ) and the activity of citrate synthetase (CS). Unfortunately, there was no significant change observed in intramuscular triglyceride (IMTG) content. In summary, our findings shed light on the role of lactate in partially regulating intramuscular triglycerides during exercise.


Assuntos
Lipólise , Condicionamento Físico Animal , Ratos , Animais , Condicionamento Físico Animal/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Ácido Láctico , Músculo Esquelético/fisiologia , Triglicerídeos/metabolismo
3.
Heliyon ; 10(2): e24421, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293399

RESUMO

Extensive research has confirmed numerous advantages of exercise for promoting brain health. More recent studies have proposed the potential benefits of lactate, the by-product of exercise, in various aspects of brain function and disorders. However, there remains a gap in understanding the effects of lactate dosage and its impact on aged rodents. The present study first examined the long-term effects of three different doses of lactate intervention (2000 mg/kg, 1000 mg/kg, and 500 mg/kg) and high-intensity interval training (HIIT) on aging mice (20-22 months) as the 1st experiment. Subsequently, in the 2nd experiment, we investigated the long-term effects of 500 mg/kg lactate intervention and HIIT on brain neuroplasticity in aged mice (25-27 months). The results of the 1st experiment demonstrated that both HIIT and different doses of lactate intervention (500 mg/kg and 2000 mg/kg) positively impacted the neuroplasticity biomarker VEGF in the hippocampus of aging mice. Subsequently, the 2nd experiment revealed that long-term HIIT significantly improved the performance of mice in open-field, novel object recognition, and passive avoidance tests. However, lactate intervention did not significantly affect these behavioral tests. Moreover, compared to the control group, both HIIT and lactate intervention positively influenced the angiogenesis signaling pathway (p/t-AKT/ENOS/VEGF), mitochondrial biomarker (SDHA), and metabolic protein (p/t-CREB, p/t-HSL, and LDH) in the hippocampus of aged mice. Notably, only lactate intervention significantly elevated the BDNF (PGC-1α, SIRT1, and BDNF) signaling pathway and metabolic content (lactate and pyruvate). In the end, long-term HIIT and lactate intervention failed to change the protein expression of p/t-MTOR, iNOS, nNOS, HIF-1α, SYNAPSIN, SIRT3, NAMPT, CS, FNDC5 and Pan Lactic aid-Lysine in the hippocampus of aged mice. In summary, the present study proved that long-term HIIT and lactate treatment have positive effects on the brain functions of aged mice, suggesting the potential usage of lactate as a therapeutic strategy in neurodegenerative diseases in the elderly population.

4.
Mol Biol Rep ; 50(3): 2591-2601, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36626064

RESUMO

BACKGROUND: High-intensity Interval Training (HIIT) is a time-efficient form of exercise and has gained popularity in recent years. However, at molecular level, the understanding about the effects of HIIT is not comprehensive, and even less is elucidated about HIIT of different training duration cycles, although different durations always lead to different post-training consequences. METHOD: In this study, by training SD rats using HIIT protocols lasting for different training duration cycles, we investigated the adaptive response of intramuscular triglyceride abundance as well as mitochondrial and lipid metabolic changes after HIIT training (2, 4, 6, 8, and 10 weeks). We selected 72 h after the last session of training as the time point of sacrifice. RESULTS: The suppressed activation of the cAMP-PKA pathway indicates that skeletal muscle was in the recovery phase at this time point. Intramuscular triglyceride abundance was significantly elevated after 2, 4, and 10 weeks of HIIT. However, the lipid metabolism-related proteins inconsistently changed in a chaotic trend (see Table 1). The expression levels of PGC1-α and COX IV decreased after 2 and 4 weeks of training and raised after 6 and 8 weeks of training. The expression level of citrate synthase (CS) decreased after 2, 4, 8, and 10 weeks of training, and showed an upward trend after 6 weeks of training. While the activity of CS decreased after 2 and 8 weeks of training and showed an upward trend after 6 weeks of HIIT. CONCLUSION: Given the abovementioned changing trends, we propose two speculations: (A) the damaged mitochondria oxidation capacity might be one of the causes of IMTG accumulation observed after 2 and 4 weeks of HIIT. This phase might be similar to the condition of type 2 diabetes. (B) after 6-week HIIT, mitochondria function and biogenesis might be improved and the IMTG contents declined to baseline. This might be explained as: mitochondrial enhancement increased the capacity of lipid oxidation and then offset the increase in IMTG achieved during the first 4 weeks. For HIIT Rat Modelling, if the aim is to observe HIIT-induced positive effects, caution should be exercised when considering 2 and 4 weeks of training under our HIIT frame. Also, implementing six-week training is at least effective for mitochondrial enhancement when using similar HIIT frame of this study.


Assuntos
Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Ratos , Animais , Treinamento Intervalado de Alta Intensidade/métodos , Diabetes Mellitus Tipo 2/metabolismo , Ratos Sprague-Dawley , Músculo Esquelético/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Triglicerídeos/metabolismo , Lipídeos
5.
Front Psychol ; 13: 1000109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262440

RESUMO

Background: During the COVID-19 pandemic, suspensions of activities and long periods of self-isolation led to a sharp increase in excessive use of mobile phones, which sparked public concern about mobile phone addiction (MPA). In recent years, more and more attention has been paid to physical exercise as a protective effect of MPA. However, more studies are needed to reveal this relationship and the exact mechanisms, based on which this study tested the mediating and moderating roles of self-control, rumination, psychological distress, and loneliness between physical exercise and MPA. Methods: In this cross-sectional study, primary data was collected by questionnaire from 1,843 college students (19.75 ± 1.3) from five universities in Sichuan Province in Mainland China. Mobile Phone Addiction Tendency Scale (MPATS), Physical Activity Rating Scale-3 (PARS-3), Self-Control Scale (SCS), Ruminative Response Scale (RRS), Depression Anxiety Stress Scale-21 (DASS-21), and UCLA Loneliness Scale (UCLA-20) were investigated. The mediating models were examined using SPSS PROCESS macro 3.3 software, in which the mediation variables were self-control, rumination, and psychological distress, and the moderation was loneliness. Gender, major, and grade were included as control variables. Result: Self-control, rumination, and psychological distress played a simple mediating role between physical exercise and MPA. Moreover, not only self-control and rumination but also self-control and psychological distress played the chain mediating roles between physical exercise and MPA. The chain pathways were moderated by loneliness. Specifically, the effect was more substantial among college students with higher loneliness. Conclusion: The conclusions corroborate and clarify that self-control, rumination, and psychological distress mediated the association between physical exercise and MPA, and the mediation effects were moderated via loneliness. This present study advanced our understanding of how and when college students' physical exercise was related to MPA. It also illustrates that educators and parents should pay more attention to college students' physical exercise.

6.
Mol Biol Rep ; 49(9): 8507-8516, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35753026

RESUMO

BACKGROUND: Lactate is an important product of glycolysis metabolism during exercise and has long been recognized as an important metabolic signaling molecule involved in inhibiting lipolysis and promoting lipogenesis, which consequently leads to regulated adipose tissue metabolism. However, recent studies have shown that lactate promotes the browning of white adipose tissue (WAT), which induces heat production and energy expenditure and ultimately causes weight loss. These studies assessing the effects of lactate on lipid metabolism in adipose tissue have revealed conflicting data, making it an important area worthy of further research. METHODS: In this study, using intramuscular injection of lactate to the gastrocnemius, we identified the role of lactate treatment on lipid metabolism and mitochondrial biogenesis of white adipose tissue and brown adipose tissue (BAT). RESULTS: Our results showed that lactate treatment activated the cAMP/PKA signaling pathway and promoted the expression of lipolysis-related proteins (AMPK, HSL, ATGL) and mitochondrial biomarkers (PGC-1α, COXIV) of WAT, while BAT showed an opposite trend after lactate treatment. Further studies showed that lactate treatment significantly increased serum epinephrine and promoted ß3-AR protein expression in WAT and significantly decreased in BAT. CONCLUSION: Our study shows that lactate seems to regulate ß3-adrenergic receptors differently in WAT and BAT, thereby eliciting disparate responses in adipose tissue.


Assuntos
Tecido Adiposo Marrom , Ácido Láctico , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético/fisiologia , Ácido Láctico/metabolismo , Lipólise , Termogênese
7.
Front Physiol ; 12: 709135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34588991

RESUMO

The glycolytic product of exercise, lactate, has long been recognized to promote lipid accumulation by activation of G-protein-coupled receptor 81 (GPR81) and inhibition of the cyclic adenosine monophosphate-protein kinase A (cAMP -PKA) pathway in adipose tissue. Whether lactate causes a similar process in skeletal muscle is unclear. Lactate might also improve mitochondria content in skeletal muscle; however, the mechanism is not clarified either. In this study, using intramuscular injection of lactate to the gastrocnemius and intraperitoneal injection of forskolin (activator of cAMP-PKA pathway), we identified the role of the cAMP-PKA pathway in lactate-induced intramuscular triglyceride accumulation and mitochondrial content increase. The intramuscular triglyceride level in the gastrocnemius increased after 5weeks of lactate injection (p<0.05), and this effect was blocked by forskolin injection (p<0.05). Corresponding expression level changes of GPR81, P-PKA/PKA, P-CREB/cAMP-response element binding protein (CREB), and proteins related to lipid metabolism suggest that lactate could induce intramuscular triglyceride accumulation partly through the inhibition of the cAMP-PKA pathway. Meanwhile, the intramuscular expression of citrate synthase (CS) and the activity of CS increased after 5weeks of lactate injection (p<0.05), but the change of CS expression was not blocked by forskolin injection, suggesting other mechanisms might exist. Consequently, exploration for other potential mechanisms that might contribute to the lactate-induced mitochondria content increase was conducted. We found an increase in the contents of lactate-related metabolites in skeletal muscle mitochondria after acute lactate injection (the p-value of each analysis is less than 0.05). LHDA was also validated to exist in mitochondria in this study. These results provide a possibility for metabolism-related mechanisms of lactate-induced mitochondria content increase. Future study is needed to validate this hypothesis. In conclusion, lactate-induced intramuscular triglyceride accumulation is achieved by inhibition of lipolysis, and this process is regulated by the cAMP-PKA pathway. Promoted lipogenesis also contributes to lactate-induced triglyceride accumulation, and this process might also be regulated by the cAMP-PKA pathway. Lactate injection might increase mitochondria content and cAMP-PKA pathway might have a limited contribution, while other metabolism-related mechanisms might play a prominent role.

8.
ACS Med Chem Lett ; 9(7): 741-745, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034611

RESUMO

A series of benzamide scaffolds were designed and synthesized by the thiazinone ring opening of PBTZ169, and N-benzyl 3,5-dinitrobenzamides were finally identified as anti-TB agents in this work. 3,5-Dinitrobenzamides D5, 6, 7, and 12 exhibit excellent in vitro activity against the drug susceptive Mycobacterium tuberculosis H37Rv strain (MIC: 0.0625 µg/mL) and two clinically isolated multidrug-resistant strains (MIC < 0.016-0.125 µg/mL). Compound D6 displays acceptable safety and better pharmacokinetic profiles than PBTZ169, suggesting its promising potential to be a lead compound for future antitubercular drug discovery.

9.
Sci Rep ; 6: 33732, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27645401

RESUMO

Muscle exercise induces intramuscular triglyceride (TG) accumulation and promotes mitochondrial maintenance in myotubes. However, the mechanism underlying exercise effects remains unknown. In this study, lactic acid was tested as a signaling molecule in C2C12 myotubes to understand the mechanism. Intracellular TG storage was induced in the cells by sodium lactate. The lactate activity was observed with an inhibition of the cAMP-PKA pathway as indicated by a reduction in the phosphorylation status of CREB (pCREB). Induction of pCREB signal by forskolin was blocked by pretreatment of cells with lactate. The impact of lactate on mitochondrial function was examined with a focus on the activities of two enzymes, MCAT (malonylCoA:ACP transferase) and PDH (pyruvate dehydrogenase). The enzyme activities were induced in the cells by lactate. Expression of the lactate receptor (GPR81) and lactate transporters (MCT1/4) were induced as well by lactate. The lactate activities were observed at concentrations between 4-64 mM, and were not dependent on the increase in intracellular pyruvate. Pyruvate treatment did not generate the same effects in the cells. Those results suggest that lactate may induce intramuscular TG storage and mitochondrial maintenance in myotubes through inhibition of the cAMP pathway by activation of GPR81 in a positive feedback manner.


Assuntos
Ácido Láctico/farmacologia , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA